MakeItFrom.com
Menu (ESC)

AISI 422 Stainless Steel vs. C14700 Copper

AISI 422 stainless steel belongs to the iron alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 422 stainless steel and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 15 to 17
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 560 to 660
160 to 190
Tensile Strength: Ultimate (UTS), MPa 910 to 1080
240 to 320
Tensile Strength: Yield (Proof), MPa 670 to 870
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 650
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1470
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
370
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
95
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
96

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 44
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1910
31 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 38
7.3 to 10
Strength to Weight: Bending, points 26 to 30
9.5 to 12
Thermal Diffusivity, mm2/s 6.4
110
Thermal Shock Resistance, points 33 to 39
8.4 to 12

Alloy Composition

Carbon (C), % 0.2 to 0.25
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 81.9 to 85.8
0
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.025
0.0020 to 0.0050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0.2 to 0.5
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.1