MakeItFrom.com
Menu (ESC)

AISI 422 Stainless Steel vs. C68000 Brass

AISI 422 stainless steel belongs to the iron alloys classification, while C68000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 422 stainless steel and the bottom bar is C68000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 15 to 17
27
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 910 to 1080
390
Tensile Strength: Yield (Proof), MPa 670 to 870
140

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 650
120
Melting Completion (Liquidus), °C 1480
880
Melting Onset (Solidus), °C 1470
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
96
Thermal Expansion, µm/m-K 10
21

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
48
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
82
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1910
95
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32 to 38
14
Strength to Weight: Bending, points 26 to 30
15
Thermal Diffusivity, mm2/s 6.4
31
Thermal Shock Resistance, points 33 to 39
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.2 to 0.25
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 81.9 to 85.8
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 1.0
0.010 to 0.5
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0.2 to 0.8
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.040 to 0.15
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.75 to 1.1
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
35.6 to 42.8
Residuals, % 0
0 to 0.5