MakeItFrom.com
Menu (ESC)

AISI 429 Stainless Steel vs. AISI 348 Stainless Steel

Both AISI 429 stainless steel and AISI 348 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common.

For each property being compared, the top bar is AISI 429 stainless steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
41
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.28
0.28
Reduction in Area, % 50
53
Rockwell B Hardness 78
81
Shear Modulus, GPa 77
77
Shear Strength, MPa 300
400
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 400
480
Maximum Temperature: Mechanical, °C 810
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
19
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.7
Embodied Energy, MJ/kg 28
54
Embodied Water, L/kg 110
150

Common Calculations

PREN (Pitting Resistance) 15
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 6.9
4.2
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 14 to 16
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 81.8 to 86
63.8 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1