MakeItFrom.com
Menu (ESC)

AISI 429 Stainless Steel vs. S46800 Stainless Steel

Both AISI 429 stainless steel and S46800 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 95% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 429 stainless steel and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
25
Fatigue Strength, MPa 180
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 78
79
Shear Modulus, GPa 77
77
Shear Strength, MPa 300
300
Tensile Strength: Ultimate (UTS), MPa 480
470
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 400
500
Maximum Temperature: Mechanical, °C 810
920
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
23
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
37
Embodied Water, L/kg 110
130

Common Calculations

PREN (Pitting Resistance) 15
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 6.9
6.1
Thermal Shock Resistance, points 17
16

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 14 to 16
18 to 20
Iron (Fe), % 81.8 to 86
76.5 to 81.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3