MakeItFrom.com
Menu (ESC)

AISI 430 Stainless Steel vs. CC140C Copper

AISI 430 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 430 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 24
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 500
340
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1510
1100
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
310
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
77
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
78

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 30
41
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
34
Resilience: Unit (Modulus of Resilience), kJ/m3 170
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 6.7
89
Thermal Shock Resistance, points 18
12

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 79.1 to 84
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0