MakeItFrom.com
Menu (ESC)

AISI 430F Stainless Steel vs. C67500 Bronze

AISI 430F stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 430F stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Shear Strength, MPa 340
270 to 350
Tensile Strength: Ultimate (UTS), MPa 540
430 to 580
Tensile Strength: Yield (Proof), MPa 310
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
110
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
27

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.1
2.8
Embodied Energy, MJ/kg 29
47
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
15 to 20
Strength to Weight: Bending, points 19
16 to 19
Thermal Diffusivity, mm2/s 6.7
34
Thermal Shock Resistance, points 19
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 79.2 to 83.9
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.3
0.050 to 0.5
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5