AISI 431 Stainless Steel vs. AWS ER90S-B9
Both AISI 431 stainless steel and AWS ER90S-B9 are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is AWS ER90S-B9.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 15 to 17 | |
18 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 77 | |
75 |
Tensile Strength: Ultimate (UTS), MPa | 890 to 1380 | |
690 |
Tensile Strength: Yield (Proof), MPa | 710 to 1040 | |
470 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
270 |
Melting Completion (Liquidus), °C | 1510 | |
1450 |
Melting Onset (Solidus), °C | 1450 | |
1410 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 26 | |
25 |
Thermal Expansion, µm/m-K | 12 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.6 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.0 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 9.0 | |
7.0 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.2 | |
2.6 |
Embodied Energy, MJ/kg | 31 | |
37 |
Embodied Water, L/kg | 120 | |
91 |
Common Calculations
PREN (Pitting Resistance) | 16 | |
13 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 180 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1270 to 2770 | |
570 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 32 to 50 | |
25 |
Strength to Weight: Bending, points | 27 to 36 | |
22 |
Thermal Diffusivity, mm2/s | 7.0 | |
6.9 |
Thermal Shock Resistance, points | 28 to 43 | |
19 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.040 |
Carbon (C), % | 0 to 0.2 | |
0.070 to 0.13 |
Chromium (Cr), % | 15 to 17 | |
8.0 to 10.5 |
Copper (Cu), % | 0 | |
0 to 0.2 |
Iron (Fe), % | 78.2 to 83.8 | |
84.4 to 90.7 |
Manganese (Mn), % | 0 to 1.0 | |
0 to 1.2 |
Molybdenum (Mo), % | 0 | |
0.85 to 1.2 |
Nickel (Ni), % | 1.3 to 2.5 | |
0 to 0.8 |
Niobium (Nb), % | 0 | |
0.020 to 0.1 |
Nitrogen (N), % | 0 | |
0.030 to 0.070 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.010 |
Silicon (Si), % | 0 to 1.0 | |
0.15 to 0.5 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.010 |
Vanadium (V), % | 0 | |
0.15 to 0.3 |
Residuals, % | 0 | |
0 to 0.5 |