MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. EN 1.0255 Steel

Both AISI 431 stainless steel and EN 1.0255 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is EN 1.0255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 17
27
Fatigue Strength, MPa 430 to 610
180
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 550 to 840
280
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
430
Tensile Strength: Yield (Proof), MPa 710 to 1040
250

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
400
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.5
Embodied Energy, MJ/kg 31
19
Embodied Water, L/kg 120
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 50
15
Strength to Weight: Bending, points 27 to 36
16
Thermal Diffusivity, mm2/s 7.0
11
Thermal Shock Resistance, points 28 to 43
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.2
0 to 0.16
Chromium (Cr), % 15 to 17
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.2 to 83.8
94.1 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 1.3 to 2.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020