MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. EN 1.5663 Steel

Both AISI 431 stainless steel and EN 1.5663 steel are iron alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
230
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 17
20
Fatigue Strength, MPa 430 to 610
450
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 550 to 840
470
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
750
Tensile Strength: Yield (Proof), MPa 710 to 1040
660

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
430
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.5
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.3
Embodied Energy, MJ/kg 31
31
Embodied Water, L/kg 120
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
1150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 50
26
Strength to Weight: Bending, points 27 to 36
23
Thermal Shock Resistance, points 28 to 43
22

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.1
Chromium (Cr), % 15 to 17
0
Iron (Fe), % 78.2 to 83.8
88.6 to 91.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.3 to 2.5
8.5 to 10
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.0050
Vanadium (V), % 0
0 to 0.010