MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. EN 1.8201 Steel

Both AISI 431 stainless steel and EN 1.8201 steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 17
20
Fatigue Strength, MPa 430 to 610
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 550 to 840
390
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
630
Tensile Strength: Yield (Proof), MPa 710 to 1040
450

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
450
Melting Completion (Liquidus), °C 1510
1500
Melting Onset (Solidus), °C 1450
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.0
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.5
Embodied Energy, MJ/kg 31
36
Embodied Water, L/kg 120
59

Common Calculations

PREN (Pitting Resistance) 16
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 50
22
Strength to Weight: Bending, points 27 to 36
20
Thermal Diffusivity, mm2/s 7.0
11
Thermal Shock Resistance, points 28 to 43
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.2
0.040 to 0.1
Chromium (Cr), % 15 to 17
1.9 to 2.6
Iron (Fe), % 78.2 to 83.8
93.6 to 96.2
Manganese (Mn), % 0 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 1.3 to 2.5
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3