MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. Titanium 6-6-2

AISI 431 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 15 to 17
6.7 to 9.0
Fatigue Strength, MPa 430 to 610
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
44
Shear Strength, MPa 550 to 840
670 to 800
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
1140 to 1370
Tensile Strength: Yield (Proof), MPa 710 to 1040
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 850
310
Melting Completion (Liquidus), °C 1510
1610
Melting Onset (Solidus), °C 1450
1560
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 26
5.5
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
40
Density, g/cm3 7.7
4.8
Embodied Carbon, kg CO2/kg material 2.2
29
Embodied Energy, MJ/kg 31
470
Embodied Water, L/kg 120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 32 to 50
66 to 79
Strength to Weight: Bending, points 27 to 36
50 to 57
Thermal Diffusivity, mm2/s 7.0
2.1
Thermal Shock Resistance, points 28 to 43
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.2
0 to 0.050
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.2 to 83.8
0.35 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 1.3 to 2.5
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4