MakeItFrom.com
Menu (ESC)

AISI 431 Stainless Steel vs. C92900 Bronze

AISI 431 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 431 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 17
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 890 to 1380
350
Tensile Strength: Yield (Proof), MPa 710 to 1040
190

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1510
1030
Melting Onset (Solidus), °C 1450
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 26
58
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
35
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.2
3.8
Embodied Energy, MJ/kg 31
61
Embodied Water, L/kg 120
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
27
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 2770
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 50
11
Strength to Weight: Bending, points 27 to 36
13
Thermal Diffusivity, mm2/s 7.0
18
Thermal Shock Resistance, points 28 to 43
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 78.2 to 83.8
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 1.3 to 2.5
2.8 to 4.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7