MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. EN 1.4109 Stainless Steel

Both AISI 436 stainless steel and EN 1.4109 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is EN 1.4109 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
19
Fatigue Strength, MPa 190
270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 320
480
Tensile Strength: Ultimate (UTS), MPa 500
770
Tensile Strength: Yield (Proof), MPa 270
420

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 460
390
Maximum Temperature: Mechanical, °C 880
820
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 38
30
Embodied Water, L/kg 120
110

Common Calculations

PREN (Pitting Resistance) 20
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
28
Strength to Weight: Bending, points 18
24
Thermal Diffusivity, mm2/s 6.7
8.1
Thermal Shock Resistance, points 18
28

Alloy Composition

Carbon (C), % 0 to 0.12
0.6 to 0.75
Chromium (Cr), % 16 to 18
14 to 16
Iron (Fe), % 77.8 to 83.3
80.7 to 85
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.3
0.4 to 0.8
Niobium (Nb), % 0 to 0.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015