MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. EN 1.4435 Stainless Steel

Both AISI 436 stainless steel and EN 1.4435 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is EN 1.4435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
43
Fatigue Strength, MPa 190
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 320
420
Tensile Strength: Ultimate (UTS), MPa 500
610
Tensile Strength: Yield (Proof), MPa 270
240

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 460
420
Maximum Temperature: Mechanical, °C 880
980
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 38
57
Embodied Water, L/kg 120
160

Common Calculations

PREN (Pitting Resistance) 20
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 16 to 18
17 to 19
Iron (Fe), % 77.8 to 83.3
59.8 to 68
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.75 to 1.3
2.5 to 3.0
Nickel (Ni), % 0
12.5 to 15
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015