MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. Grade Ti-Pd8A Titanium

AISI 436 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
13
Fatigue Strength, MPa 190
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 500
500
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 880
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.7
49
Embodied Energy, MJ/kg 38
840
Embodied Water, L/kg 120
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 190
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 18
31
Thermal Diffusivity, mm2/s 6.7
8.6
Thermal Shock Resistance, points 18
39

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.1
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 77.8 to 83.3
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 0.050
Niobium (Nb), % 0 to 0.8
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4