MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. C41500 Brass

AISI 436 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
2.0 to 42
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 77
62 to 90
Shear Modulus, GPa 77
42
Shear Strength, MPa 320
220 to 360
Tensile Strength: Ultimate (UTS), MPa 500
340 to 560
Tensile Strength: Yield (Proof), MPa 270
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 880
180
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
11 to 18
Strength to Weight: Bending, points 18
12 to 17
Thermal Diffusivity, mm2/s 6.7
37
Thermal Shock Resistance, points 18
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 77.8 to 83.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.75 to 1.3
0
Niobium (Nb), % 0 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5