MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. S40975 Stainless Steel

Both AISI 436 stainless steel and S40975 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 77
81
Shear Modulus, GPa 77
75
Shear Strength, MPa 320
290
Tensile Strength: Ultimate (UTS), MPa 500
460
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 460
450
Maximum Temperature: Mechanical, °C 880
710
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
6.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 38
28
Embodied Water, L/kg 120
95

Common Calculations

PREN (Pitting Resistance) 20
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
93
Resilience: Unit (Modulus of Resilience), kJ/m3 190
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.7
7.0
Thermal Shock Resistance, points 18
17

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 16 to 18
10.5 to 11.7
Iron (Fe), % 77.8 to 83.3
84.4 to 89
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0.5 to 1.0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.75