MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. AISI 444 Stainless Steel

Both AISI 439 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 170
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 78
83
Shear Modulus, GPa 77
78
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 490
470
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 530
580
Maximum Temperature: Mechanical, °C 890
930
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
23
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.3
3.4
Embodied Energy, MJ/kg 34
47
Embodied Water, L/kg 120
130

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
95
Resilience: Unit (Modulus of Resilience), kJ/m3 160
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.7
6.2
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 17 to 19
17.5 to 19.5
Iron (Fe), % 77.1 to 82.8
73.3 to 80.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.5
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 1.1
0.2 to 0.8