MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. EN 1.0108 Steel

Both AISI 439 stainless steel and EN 1.0108 steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
110
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
29
Fatigue Strength, MPa 170
150
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 310
250
Tensile Strength: Ultimate (UTS), MPa 490
380
Tensile Strength: Yield (Proof), MPa 250
200

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
50
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 34
19
Embodied Water, L/kg 120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
94
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
13
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.020 to 0.2
Carbon (C), % 0 to 0.030
0 to 0.13
Chromium (Cr), % 17 to 19
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 77.1 to 82.8
97.5 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 1.1
0 to 0.040
Vanadium (V), % 0
0 to 0.020