MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. EN 1.0453 Steel

Both AISI 439 stainless steel and EN 1.0453 steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is EN 1.0453 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
26
Fatigue Strength, MPa 170
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 490
490
Tensile Strength: Yield (Proof), MPa 250
300

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
49
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 34
20
Embodied Water, L/kg 120
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 17 to 19
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 77.1 to 82.8
96.9 to 99.38
Manganese (Mn), % 0 to 1.0
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.2 to 1.1
0 to 0.040
Vanadium (V), % 0
0 to 0.020