MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. EN 2.4608 Nickel

AISI 439 stainless steel belongs to the iron alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 23
34
Fatigue Strength, MPa 170
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
81
Shear Strength, MPa 310
410
Tensile Strength: Ultimate (UTS), MPa 490
620
Tensile Strength: Yield (Proof), MPa 250
270

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 890
1000
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 25
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
55
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 2.3
8.4
Embodied Energy, MJ/kg 34
120
Embodied Water, L/kg 120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
170
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.7
2.9
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0.030 to 0.080
Chromium (Cr), % 17 to 19
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Iron (Fe), % 77.1 to 82.8
11.4 to 23.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.5
44 to 47
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0.7 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 1.1
0
Tungsten (W), % 0
2.5 to 4.0