MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. SAE-AISI 1015 Steel

Both AISI 439 stainless steel and SAE-AISI 1015 steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is SAE-AISI 1015 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
20 to 32
Fatigue Strength, MPa 170
170 to 250
Poisson's Ratio 0.28
0.29
Reduction in Area, % 51
46 to 56
Shear Modulus, GPa 77
73
Shear Strength, MPa 310
260 to 270
Tensile Strength: Ultimate (UTS), MPa 490
390 to 440
Tensile Strength: Yield (Proof), MPa 250
210 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1510
1470
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.4
Embodied Energy, MJ/kg 34
18
Embodied Water, L/kg 120
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
14 to 15
Strength to Weight: Bending, points 18
15 to 16
Thermal Diffusivity, mm2/s 6.7
14
Thermal Shock Resistance, points 16
12 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0.13 to 0.18
Chromium (Cr), % 17 to 19
0
Iron (Fe), % 77.1 to 82.8
99.13 to 99.57
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0.2 to 1.1
0