MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. C65500 Bronze

AISI 439 stainless steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
4.0 to 70
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 78
62 to 97
Shear Modulus, GPa 77
43
Shear Strength, MPa 310
260 to 440
Tensile Strength: Ultimate (UTS), MPa 490
360 to 760
Tensile Strength: Yield (Proof), MPa 250
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1510
1030
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 25
36
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Calomel Potential, mV -220
-270
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 34
42
Embodied Water, L/kg 120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 160
62 to 790
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
12 to 24
Strength to Weight: Bending, points 18
13 to 21
Thermal Diffusivity, mm2/s 6.7
10
Thermal Shock Resistance, points 16
12 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 77.1 to 82.8
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.5 to 1.3
Nickel (Ni), % 0 to 0.5
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.8 to 3.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.1
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5