MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. C71640 Copper-nickel

AISI 439 stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 490
490 to 630
Tensile Strength: Yield (Proof), MPa 250
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 890
260
Melting Completion (Liquidus), °C 1510
1180
Melting Onset (Solidus), °C 1430
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
29
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
40
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.3
5.0
Embodied Energy, MJ/kg 34
73
Embodied Water, L/kg 120
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 160
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
15 to 20
Strength to Weight: Bending, points 18
16 to 18
Thermal Diffusivity, mm2/s 6.7
8.2
Thermal Shock Resistance, points 16
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
61.7 to 67.8
Iron (Fe), % 77.1 to 82.8
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
1.5 to 2.5
Nickel (Ni), % 0 to 0.5
29 to 32
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.1
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5