MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. C99500 Copper

AISI 439 stainless steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 490
540
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1510
1090
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.3
3.0
Embodied Energy, MJ/kg 34
47
Embodied Water, L/kg 120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
63
Resilience: Unit (Modulus of Resilience), kJ/m3 160
410
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.5 to 2.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
82.5 to 92
Iron (Fe), % 77.1 to 82.8
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.1
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3