MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. S32304 Stainless Steel

Both AISI 439 stainless steel and S32304 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Shear Strength, MPa 310
440
Tensile Strength: Ultimate (UTS), MPa 490
670
Tensile Strength: Yield (Proof), MPa 250
460

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 530
440
Maximum Temperature: Mechanical, °C 890
1050
Melting Completion (Liquidus), °C 1510
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
14
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 34
40
Embodied Water, L/kg 120
160

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
170
Resilience: Unit (Modulus of Resilience), kJ/m3 160
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17 to 19
21.5 to 24.5
Copper (Cu), % 0
0.050 to 0.6
Iron (Fe), % 77.1 to 82.8
65 to 75.4
Manganese (Mn), % 0 to 1.0
0 to 2.5
Molybdenum (Mo), % 0
0.050 to 0.6
Nickel (Ni), % 0 to 0.5
3.0 to 5.5
Nitrogen (N), % 0 to 0.030
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 1.1
0