MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. S41045 Stainless Steel

Both AISI 439 stainless steel and S41045 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
25
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 78
70
Shear Modulus, GPa 77
76
Shear Strength, MPa 310
280
Tensile Strength: Ultimate (UTS), MPa 490
430
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 530
430
Maximum Temperature: Mechanical, °C 890
740
Melting Completion (Liquidus), °C 1510
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.2
Embodied Energy, MJ/kg 34
31
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 18
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
92
Resilience: Unit (Modulus of Resilience), kJ/m3 160
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 6.7
7.8
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17 to 19
12 to 13
Iron (Fe), % 77.1 to 82.8
83.8 to 88
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 1.1
0