MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. 5042 Aluminum

AISI 440A stainless steel belongs to the iron alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 5.0 to 20
1.1 to 3.4
Fatigue Strength, MPa 270 to 790
97 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 450 to 1040
200
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
340 to 360
Tensile Strength: Yield (Proof), MPa 420 to 1650
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 760
180
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.8
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
3.6 to 12
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 26 to 65
35 to 37
Strength to Weight: Bending, points 23 to 43
40 to 42
Thermal Diffusivity, mm2/s 6.2
53
Thermal Shock Resistance, points 26 to 65
15 to 16

Alloy Composition

Aluminum (Al), % 0
94.2 to 96.8
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 78.4 to 83.4
0 to 0.35
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15