MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. C355.0 Aluminum

AISI 440A stainless steel belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 5.0 to 20
2.7 to 3.8
Fatigue Strength, MPa 270 to 790
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
290 to 310
Tensile Strength: Yield (Proof), MPa 420 to 1650
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1480
620
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 23
150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.0
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 120
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
7.5 to 9.8
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 26 to 65
30 to 32
Strength to Weight: Bending, points 23 to 43
36 to 37
Thermal Diffusivity, mm2/s 6.2
60
Thermal Shock Resistance, points 26 to 65
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 78.4 to 83.4
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15