MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. Grade 15 Titanium

AISI 440A stainless steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 5.0 to 20
20
Fatigue Strength, MPa 270 to 790
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 450 to 1040
340
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
540
Tensile Strength: Yield (Proof), MPa 420 to 1650
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 760
320
Melting Completion (Liquidus), °C 1480
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 23
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
32
Embodied Energy, MJ/kg 31
520
Embodied Water, L/kg 120
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26 to 65
33
Strength to Weight: Bending, points 23 to 43
33
Thermal Diffusivity, mm2/s 6.2
8.4
Thermal Shock Resistance, points 26 to 65
41

Alloy Composition

Carbon (C), % 0.6 to 0.75
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.4 to 83.4
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4