MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. Grade 6 Titanium

AISI 440A stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 5.0 to 20
11
Fatigue Strength, MPa 270 to 790
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 450 to 1040
530
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
890
Tensile Strength: Yield (Proof), MPa 420 to 1650
840

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 760
310
Melting Completion (Liquidus), °C 1480
1580
Melting Onset (Solidus), °C 1370
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 23
7.8
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
30
Embodied Energy, MJ/kg 31
480
Embodied Water, L/kg 120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
92
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26 to 65
55
Strength to Weight: Bending, points 23 to 43
46
Thermal Diffusivity, mm2/s 6.2
3.2
Thermal Shock Resistance, points 26 to 65
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0.6 to 0.75
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.4 to 83.4
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4