MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. C18600 Copper

AISI 440A stainless steel belongs to the iron alloys classification, while C18600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 5.0 to 20
8.0 to 11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 450 to 1040
310 to 340
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
520 to 580
Tensile Strength: Yield (Proof), MPa 420 to 1650
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 760
200
Melting Completion (Liquidus), °C 1480
1090
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
280
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
70
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
71

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.2
2.9
Embodied Energy, MJ/kg 31
46
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
44 to 58
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26 to 65
16 to 18
Strength to Weight: Bending, points 23 to 43
16 to 17
Thermal Diffusivity, mm2/s 6.2
81
Thermal Shock Resistance, points 26 to 65
19 to 20

Alloy Composition

Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0
96.5 to 99.55
Iron (Fe), % 78.4 to 83.4
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5