MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. C37100 Brass

AISI 440A stainless steel belongs to the iron alloys classification, while C37100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 5.0 to 20
8.0 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 450 to 1040
260 to 300
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
370 to 520
Tensile Strength: Yield (Proof), MPa 420 to 1650
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 760
120
Melting Completion (Liquidus), °C 1480
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
45
Embodied Water, L/kg 120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
38 to 120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26 to 65
13 to 18
Strength to Weight: Bending, points 23 to 43
14 to 18
Thermal Diffusivity, mm2/s 6.2
39
Thermal Shock Resistance, points 26 to 65
12 to 17

Alloy Composition

Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 78.4 to 83.4
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
36.3 to 41.4
Residuals, % 0
0 to 0.4