MakeItFrom.com
Menu (ESC)

AISI 440A Stainless Steel vs. C97600 Dairy Metal

AISI 440A stainless steel belongs to the iron alloys classification, while C97600 dairy metal belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440A stainless steel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 5.0 to 20
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 730 to 1790
310
Tensile Strength: Yield (Proof), MPa 420 to 1650
140

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 760
210
Melting Completion (Liquidus), °C 1480
1140
Melting Onset (Solidus), °C 1370
1110
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
22
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
37
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.2
4.6
Embodied Energy, MJ/kg 31
69
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 120
29
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26 to 65
9.8
Strength to Weight: Bending, points 23 to 43
12
Thermal Diffusivity, mm2/s 6.2
6.5
Thermal Shock Resistance, points 26 to 65
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
63 to 67
Iron (Fe), % 78.4 to 83.4
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
19 to 21.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3