MakeItFrom.com
Menu (ESC)

AISI 440B Stainless Steel vs. 7020 Aluminum

AISI 440B stainless steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440B stainless steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 3.0 to 18
8.4 to 14
Fatigue Strength, MPa 260 to 850
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 460 to 1110
110 to 230
Tensile Strength: Ultimate (UTS), MPa 740 to 1930
190 to 390
Tensile Strength: Yield (Proof), MPa 430 to 1860
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1370
610
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 23
150
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 110
23 to 46
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 27 to 70
18 to 37
Strength to Weight: Bending, points 24 to 45
25 to 41
Thermal Diffusivity, mm2/s 6.1
59
Thermal Shock Resistance, points 27 to 70
8.3 to 17

Alloy Composition

Aluminum (Al), % 0
91.2 to 94.8
Carbon (C), % 0.75 to 1.0
0
Chromium (Cr), % 16 to 18
0.1 to 0.35
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 78.2 to 83.3
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants