MakeItFrom.com
Menu (ESC)

AISI 440B Stainless Steel vs. C68100 Brass

AISI 440B stainless steel belongs to the iron alloys classification, while C68100 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 440B stainless steel and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 3.0 to 18
29
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 740 to 1930
380
Tensile Strength: Yield (Proof), MPa 430 to 1860
140

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1480
890
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
98
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
47
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 110
86
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27 to 70
13
Strength to Weight: Bending, points 24 to 45
15
Thermal Diffusivity, mm2/s 6.1
32
Thermal Shock Resistance, points 27 to 70
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.75 to 1.0
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 78.2 to 83.3
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.010 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.040 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5