MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. AWS E3155

Both AISI 440C stainless steel and AWS E3155 are iron alloys. They have 48% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 2.0 to 14
23
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
81
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
770

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 22
13
Thermal Expansion, µm/m-K 10
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
70
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.2
7.7
Embodied Energy, MJ/kg 31
110
Embodied Water, L/kg 120
300

Common Calculations

PREN (Pitting Resistance) 18
35
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 71
26
Strength to Weight: Bending, points 23 to 46
22
Thermal Diffusivity, mm2/s 6.0
3.3
Thermal Shock Resistance, points 26 to 71
20

Alloy Composition

Carbon (C), % 1.0 to 1.2
0 to 0.1
Chromium (Cr), % 16 to 18
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 78 to 83.1
23.3 to 36.3
Manganese (Mn), % 0 to 1.0
1.0 to 2.5
Molybdenum (Mo), % 0 to 0.75
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 0
2.0 to 3.0