MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. EN 1.4901 Stainless Steel

Both AISI 440C stainless steel and EN 1.4901 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 2.0 to 14
19
Fatigue Strength, MPa 260 to 840
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 430 to 1120
460
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
740
Tensile Strength: Yield (Proof), MPa 450 to 1900
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Corrosion, °C 390
380
Maximum Temperature: Mechanical, °C 870
650
Melting Completion (Liquidus), °C 1480
1490
Melting Onset (Solidus), °C 1370
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 22
26
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
40
Embodied Water, L/kg 120
89

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 71
26
Strength to Weight: Bending, points 23 to 46
23
Thermal Diffusivity, mm2/s 6.0
6.9
Thermal Shock Resistance, points 26 to 71
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 1.0 to 1.2
0.070 to 0.13
Chromium (Cr), % 16 to 18
8.5 to 9.5
Iron (Fe), % 78 to 83.1
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.75
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010