MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. EN 1.8868 Steel

Both AISI 440C stainless steel and EN 1.8868 steel are iron alloys. They have 82% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is EN 1.8868 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 2.0 to 14
25
Fatigue Strength, MPa 260 to 840
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 430 to 1120
350
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
540
Tensile Strength: Yield (Proof), MPa 450 to 1900
350

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
410
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 22
48
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
1.6
Embodied Energy, MJ/kg 31
21
Embodied Water, L/kg 120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 71
19
Strength to Weight: Bending, points 23 to 46
19
Thermal Diffusivity, mm2/s 6.0
13
Thermal Shock Resistance, points 26 to 71
16

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 1.0 to 1.2
0 to 0.16
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78 to 83.1
96.4 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.75
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zirconium (Zr), % 0
0 to 0.050