MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. EN 1.8880 Steel

Both AISI 440C stainless steel and EN 1.8880 steel are iron alloys. They have 83% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 2.0 to 14
16
Fatigue Strength, MPa 260 to 840
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 430 to 1120
510
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
830
Tensile Strength: Yield (Proof), MPa 450 to 1900
720

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 870
420
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 22
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.9
Embodied Energy, MJ/kg 31
26
Embodied Water, L/kg 120
54

Common Calculations

PREN (Pitting Resistance) 18
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26 to 71
29
Strength to Weight: Bending, points 23 to 46
25
Thermal Diffusivity, mm2/s 6.0
11
Thermal Shock Resistance, points 26 to 71
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 1.0 to 1.2
0 to 0.2
Chromium (Cr), % 16 to 18
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78 to 83.1
91.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0 to 0.75
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15