MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. EN-MC65120 Magnesium

AISI 440C stainless steel belongs to the iron alloys classification, while EN-MC65120 magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is EN-MC65120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 2.0 to 14
3.1
Fatigue Strength, MPa 260 to 840
80
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Shear Strength, MPa 430 to 1120
92
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
160
Tensile Strength: Yield (Proof), MPa 450 to 1900
110

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1480
590
Melting Onset (Solidus), °C 1370
520
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 22
100
Thermal Expansion, µm/m-K 10
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
25
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 2.2
25
Embodied Energy, MJ/kg 31
190
Embodied Water, L/kg 120
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
4.4
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
62
Strength to Weight: Axial, points 26 to 71
23
Strength to Weight: Bending, points 23 to 46
34
Thermal Diffusivity, mm2/s 6.0
56
Thermal Shock Resistance, points 26 to 71
9.8

Alloy Composition

Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 78 to 83.1
0 to 0.010
Magnesium (Mg), % 0
91.8 to 95.1
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0
0 to 0.0050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Zinc (Zn), % 0
2.0 to 3.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010