MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. Grade 28 Titanium

AISI 440C stainless steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.0 to 14
11 to 17
Fatigue Strength, MPa 260 to 840
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 430 to 1120
420 to 590
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
690 to 980
Tensile Strength: Yield (Proof), MPa 450 to 1900
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 870
330
Melting Completion (Liquidus), °C 1480
1640
Melting Onset (Solidus), °C 1370
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 22
8.3
Thermal Expansion, µm/m-K 10
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
37
Embodied Energy, MJ/kg 31
600
Embodied Water, L/kg 120
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
87 to 110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26 to 71
43 to 61
Strength to Weight: Bending, points 23 to 46
39 to 49
Thermal Diffusivity, mm2/s 6.0
3.4
Thermal Shock Resistance, points 26 to 71
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 1.0 to 1.2
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78 to 83.1
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants