MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. C62500 Bronze

AISI 440C stainless steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.0 to 14
1.0
Fatigue Strength, MPa 260 to 840
460
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Shear Strength, MPa 430 to 1120
410
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
690
Tensile Strength: Yield (Proof), MPa 450 to 1900
410

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 870
230
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1370
1050
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 22
47
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
26
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.2
3.3
Embodied Energy, MJ/kg 31
55
Embodied Water, L/kg 120
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
6.0
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26 to 71
24
Strength to Weight: Bending, points 23 to 46
22
Thermal Diffusivity, mm2/s 6.0
13
Thermal Shock Resistance, points 26 to 71
24

Alloy Composition

Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 78 to 83.1
3.5 to 5.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5