MakeItFrom.com
Menu (ESC)

AISI 440C Stainless Steel vs. C67500 Bronze

AISI 440C stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 440C stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 2.0 to 14
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Shear Strength, MPa 430 to 1120
270 to 350
Tensile Strength: Ultimate (UTS), MPa 710 to 1970
430 to 580
Tensile Strength: Yield (Proof), MPa 450 to 1900
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1480
890
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 22
110
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
47
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 88
61 to 130
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26 to 71
15 to 20
Strength to Weight: Bending, points 23 to 46
16 to 19
Thermal Diffusivity, mm2/s 6.0
34
Thermal Shock Resistance, points 26 to 71
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 1.0 to 1.2
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 78 to 83.1
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5