MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. ACI-ASTM CB6 Steel

Both AISI 441 stainless steel and ACI-ASTM CB6 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
18
Fatigue Strength, MPa 180
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 470
880
Tensile Strength: Yield (Proof), MPa 270
660

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 550
410
Maximum Temperature: Mechanical, °C 910
870
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
17
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 41
36
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 19
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
150
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 6.1
4.6
Thermal Shock Resistance, points 16
31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 17.5 to 19.5
15.5 to 17.5
Iron (Fe), % 76 to 82.2
74.4 to 81
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.1 to 0.5
0