MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. AISI 444 Stainless Steel

Both AISI 441 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 180
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 77
83
Shear Modulus, GPa 77
78
Shear Strength, MPa 300
300
Tensile Strength: Ultimate (UTS), MPa 470
470
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 550
580
Maximum Temperature: Mechanical, °C 910
930
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 19
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
95
Resilience: Unit (Modulus of Resilience), kJ/m3 190
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 6.1
6.2
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 17.5 to 19.5
17.5 to 19.5
Iron (Fe), % 76 to 82.2
73.3 to 80.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 1.0
0 to 1.0
Niobium (Nb), % 0.3 to 0.9
0.2 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.1 to 0.5
0.2 to 0.8