MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. EN 1.1133 Steel

Both AISI 441 stainless steel and EN 1.1133 steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
19 to 24
Fatigue Strength, MPa 180
230 to 310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 300
370 to 380
Tensile Strength: Ultimate (UTS), MPa 470
580 to 620
Tensile Strength: Yield (Proof), MPa 270
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
49
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 130
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
270 to 550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
21 to 22
Strength to Weight: Bending, points 17
20 to 21
Thermal Diffusivity, mm2/s 6.1
13
Thermal Shock Resistance, points 16
18 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0.17 to 0.23
Chromium (Cr), % 17.5 to 19.5
0 to 0.4
Iron (Fe), % 76 to 82.2
96.9 to 98.8
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 1.0
0 to 0.4
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0.1 to 0.5
0