MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. EN 1.4449 Stainless Steel

Both AISI 441 stainless steel and EN 1.4449 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is EN 1.4449 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
48
Fatigue Strength, MPa 180
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 300
440
Tensile Strength: Ultimate (UTS), MPa 470
620
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 550
410
Maximum Temperature: Mechanical, °C 910
960
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 41
54
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 19
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
240
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.1
4.0
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.035
Chromium (Cr), % 17.5 to 19.5
17 to 18.2
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 76 to 82.2
62.4 to 69.3
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.3 to 2.8
Nickel (Ni), % 0 to 1.0
11.5 to 12.5
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0 to 0.080
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.1 to 0.5
0