MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. EN 1.4857 Stainless Steel

Both AISI 441 stainless steel and EN 1.4857 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is EN 1.4857 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
6.7
Fatigue Strength, MPa 180
120
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 470
500
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Corrosion, °C 550
440
Maximum Temperature: Mechanical, °C 910
1100
Melting Completion (Liquidus), °C 1440
1370
Melting Onset (Solidus), °C 1400
1320
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
13
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.7
Embodied Energy, MJ/kg 41
81
Embodied Water, L/kg 130
220

Common Calculations

PREN (Pitting Resistance) 19
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
28
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 6.1
3.4
Thermal Shock Resistance, points 16
11

Alloy Composition

Carbon (C), % 0 to 0.030
0.3 to 0.5
Chromium (Cr), % 17.5 to 19.5
24 to 27
Iron (Fe), % 76 to 82.2
31.4 to 41.7
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
33 to 36
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.1 to 0.5
0