MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. EN 1.5501 Steel

Both AISI 441 stainless steel and EN 1.5501 steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
120 to 150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
12 to 17
Fatigue Strength, MPa 180
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 300
270 to 310
Tensile Strength: Ultimate (UTS), MPa 470
390 to 510
Tensile Strength: Yield (Proof), MPa 270
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 130
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 190
190 to 460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
14 to 18
Strength to Weight: Bending, points 17
15 to 18
Thermal Diffusivity, mm2/s 6.1
14
Thermal Shock Resistance, points 16
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.030
0.13 to 0.16
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 76 to 82.2
98.4 to 99.269
Manganese (Mn), % 0 to 1.0
0.6 to 0.8
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0.1 to 0.5
0